Skip to content

vllm.model_executor.models.pangu

Native OpenPangu Embedded model implementation.

PanguAttention

Bases: Module

Self-attention block with GQA.

Source code in vllm/model_executor/models/pangu.py
class PanguAttention(nn.Module):
    """Self-attention block with GQA."""

    def __init__(
        self,
        config: PretrainedConfig,
        *,
        cache_config: CacheConfig | None,
        quant_config: QuantizationConfig | None,
        prefix: str,
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        self.total_num_heads = config.num_attention_heads
        self.total_num_kv_heads = getattr(
            config, "num_key_value_heads", config.num_attention_heads
        )
        tp_size = get_tensor_model_parallel_world_size()
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        if self.total_num_kv_heads >= tp_size:
            assert self.total_num_kv_heads % tp_size == 0
        else:
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = getattr(
            config,
            "head_dim",
            self.hidden_size // self.total_num_heads,
        )
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5

        rope_theta = getattr(config, "rope_theta", 10000.0)
        rope_scaling = getattr(config, "rope_scaling", None)
        if rope_scaling is not None:
            rope_scaling = dict(rope_scaling)
            original_max_position = getattr(
                config, "original_max_position_embeddings", None
            )
            if original_max_position is not None:
                rope_scaling.setdefault(
                    "original_max_position_embeddings", original_max_position
                )
        max_position_embeddings = getattr(config, "max_position_embeddings", 2048)

        bias = getattr(config, "bias", False)
        self.q_proj = ColumnParallelLinear(
            self.hidden_size,
            self.total_num_heads * self.head_dim,
            bias=bias,
            quant_config=quant_config,
            prefix=f"{prefix}.q_proj",
        )
        self.k_proj = ColumnParallelLinear(
            self.hidden_size,
            self.total_num_kv_heads * self.head_dim,
            bias=bias,
            quant_config=quant_config,
            prefix=f"{prefix}.k_proj",
        )
        self.v_proj = ColumnParallelLinear(
            self.hidden_size,
            self.total_num_kv_heads * self.head_dim,
            bias=bias,
            quant_config=quant_config,
            prefix=f"{prefix}.v_proj",
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            self.hidden_size,
            bias=bias,
            quant_config=quant_config,
            prefix=f"{prefix}.o_proj",
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=True,
        )
        self.attn = Attention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            cache_config=cache_config,
            quant_config=quant_config,
            attn_type=AttentionType.DECODER,
            prefix=f"{prefix}.attn",
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        q, _ = self.q_proj(hidden_states)
        k, _ = self.k_proj(hidden_states)
        v, _ = self.v_proj(hidden_states)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v)
        output, _ = self.o_proj(attn_output)
        return output

attn instance-attribute

attn = Attention(
    num_heads,
    head_dim,
    scaling,
    num_kv_heads=num_kv_heads,
    cache_config=cache_config,
    quant_config=quant_config,
    attn_type=DECODER,
    prefix=f"{prefix}.attn",
)

head_dim instance-attribute

head_dim = getattr(
    config, "head_dim", hidden_size // total_num_heads
)

hidden_size instance-attribute

hidden_size = hidden_size

k_proj instance-attribute

k_proj = ColumnParallelLinear(
    hidden_size,
    total_num_kv_heads * head_dim,
    bias=bias,
    quant_config=quant_config,
    prefix=f"{prefix}.k_proj",
)

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

num_heads instance-attribute

num_heads = total_num_heads // tp_size

num_kv_heads instance-attribute

num_kv_heads = max(1, total_num_kv_heads // tp_size)

o_proj instance-attribute

o_proj = RowParallelLinear(
    total_num_heads * head_dim,
    hidden_size,
    bias=bias,
    quant_config=quant_config,
    prefix=f"{prefix}.o_proj",
)

q_proj instance-attribute

q_proj = ColumnParallelLinear(
    hidden_size,
    total_num_heads * head_dim,
    bias=bias,
    quant_config=quant_config,
    prefix=f"{prefix}.q_proj",
)

q_size instance-attribute

q_size = num_heads * head_dim

rotary_emb instance-attribute

rotary_emb = get_rope(
    head_dim,
    rotary_dim=head_dim,
    max_position=max_position_embeddings,
    base=rope_theta,
    rope_scaling=rope_scaling,
    is_neox_style=True,
)

scaling instance-attribute

scaling = head_dim ** -0.5

total_num_heads instance-attribute

total_num_heads = num_attention_heads

total_num_kv_heads instance-attribute

total_num_kv_heads = getattr(
    config, "num_key_value_heads", num_attention_heads
)

v_proj instance-attribute

v_proj = ColumnParallelLinear(
    hidden_size,
    total_num_kv_heads * head_dim,
    bias=bias,
    quant_config=quant_config,
    prefix=f"{prefix}.v_proj",
)

__init__

__init__(
    config: PretrainedConfig,
    *,
    cache_config: CacheConfig | None,
    quant_config: QuantizationConfig | None,
    prefix: str,
) -> None
Source code in vllm/model_executor/models/pangu.py
def __init__(
    self,
    config: PretrainedConfig,
    *,
    cache_config: CacheConfig | None,
    quant_config: QuantizationConfig | None,
    prefix: str,
) -> None:
    super().__init__()
    self.hidden_size = config.hidden_size
    self.total_num_heads = config.num_attention_heads
    self.total_num_kv_heads = getattr(
        config, "num_key_value_heads", config.num_attention_heads
    )
    tp_size = get_tensor_model_parallel_world_size()
    assert self.total_num_heads % tp_size == 0
    self.num_heads = self.total_num_heads // tp_size
    if self.total_num_kv_heads >= tp_size:
        assert self.total_num_kv_heads % tp_size == 0
    else:
        assert tp_size % self.total_num_kv_heads == 0
    self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
    self.head_dim = getattr(
        config,
        "head_dim",
        self.hidden_size // self.total_num_heads,
    )
    self.q_size = self.num_heads * self.head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    self.scaling = self.head_dim**-0.5

    rope_theta = getattr(config, "rope_theta", 10000.0)
    rope_scaling = getattr(config, "rope_scaling", None)
    if rope_scaling is not None:
        rope_scaling = dict(rope_scaling)
        original_max_position = getattr(
            config, "original_max_position_embeddings", None
        )
        if original_max_position is not None:
            rope_scaling.setdefault(
                "original_max_position_embeddings", original_max_position
            )
    max_position_embeddings = getattr(config, "max_position_embeddings", 2048)

    bias = getattr(config, "bias", False)
    self.q_proj = ColumnParallelLinear(
        self.hidden_size,
        self.total_num_heads * self.head_dim,
        bias=bias,
        quant_config=quant_config,
        prefix=f"{prefix}.q_proj",
    )
    self.k_proj = ColumnParallelLinear(
        self.hidden_size,
        self.total_num_kv_heads * self.head_dim,
        bias=bias,
        quant_config=quant_config,
        prefix=f"{prefix}.k_proj",
    )
    self.v_proj = ColumnParallelLinear(
        self.hidden_size,
        self.total_num_kv_heads * self.head_dim,
        bias=bias,
        quant_config=quant_config,
        prefix=f"{prefix}.v_proj",
    )
    self.o_proj = RowParallelLinear(
        self.total_num_heads * self.head_dim,
        self.hidden_size,
        bias=bias,
        quant_config=quant_config,
        prefix=f"{prefix}.o_proj",
    )

    self.rotary_emb = get_rope(
        self.head_dim,
        rotary_dim=self.head_dim,
        max_position=max_position_embeddings,
        base=rope_theta,
        rope_scaling=rope_scaling,
        is_neox_style=True,
    )
    self.attn = Attention(
        self.num_heads,
        self.head_dim,
        self.scaling,
        num_kv_heads=self.num_kv_heads,
        cache_config=cache_config,
        quant_config=quant_config,
        attn_type=AttentionType.DECODER,
        prefix=f"{prefix}.attn",
    )

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/pangu.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    q, _ = self.q_proj(hidden_states)
    k, _ = self.k_proj(hidden_states)
    v, _ = self.v_proj(hidden_states)
    q, k = self.rotary_emb(positions, q, k)
    attn_output = self.attn(q, k, v)
    output, _ = self.o_proj(attn_output)
    return output

PanguDecoderLayer

Bases: Module

Single decoder block for PanguEmbedded.

Source code in vllm/model_executor/models/pangu.py
class PanguDecoderLayer(nn.Module):
    """Single decoder block for PanguEmbedded."""

    def __init__(
        self,
        *,
        vllm_config: VllmConfig,
        prefix: str = "",
        config: PretrainedConfig | None = None,
    ) -> None:
        super().__init__()
        config = config or vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = self.get_quant_config(vllm_config)

        self.hidden_size = config.hidden_size
        self.self_attn = PanguAttention(
            config,
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
        )
        self.mlp = PanguMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
            bias=getattr(config, "bias", False),
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )
        self.input_layernorm = RMSNorm(
            config.hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5)
        )
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5)
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: torch.Tensor | None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)

        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
        )
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual

    def get_quant_config(self, vllm_config: VllmConfig) -> QuantizationConfig | None:
        return vllm_config.quant_config

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = RMSNorm(
    hidden_size, eps=getattr(config, "rms_norm_eps", 1e-05)
)

mlp instance-attribute

mlp = PanguMLP(
    hidden_size=hidden_size,
    intermediate_size=intermediate_size,
    hidden_act=hidden_act,
    bias=getattr(config, "bias", False),
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

post_attention_layernorm instance-attribute

post_attention_layernorm = RMSNorm(
    hidden_size, eps=getattr(config, "rms_norm_eps", 1e-05)
)

self_attn instance-attribute

self_attn = PanguAttention(
    config,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.self_attn",
)

__init__

__init__(
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    config: PretrainedConfig | None = None,
) -> None
Source code in vllm/model_executor/models/pangu.py
def __init__(
    self,
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    config: PretrainedConfig | None = None,
) -> None:
    super().__init__()
    config = config or vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = self.get_quant_config(vllm_config)

    self.hidden_size = config.hidden_size
    self.self_attn = PanguAttention(
        config,
        cache_config=cache_config,
        quant_config=quant_config,
        prefix=f"{prefix}.self_attn",
    )
    self.mlp = PanguMLP(
        hidden_size=self.hidden_size,
        intermediate_size=config.intermediate_size,
        hidden_act=config.hidden_act,
        bias=getattr(config, "bias", False),
        quant_config=quant_config,
        prefix=f"{prefix}.mlp",
    )
    self.input_layernorm = RMSNorm(
        config.hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5)
    )
    self.post_attention_layernorm = RMSNorm(
        config.hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5)
    )

forward

forward(
    positions: Tensor,
    hidden_states: Tensor,
    residual: Tensor | None,
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/pangu.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    residual: torch.Tensor | None,
) -> tuple[torch.Tensor, torch.Tensor]:
    if residual is None:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
    else:
        hidden_states, residual = self.input_layernorm(hidden_states, residual)

    hidden_states = self.self_attn(
        positions=positions,
        hidden_states=hidden_states,
    )
    hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
    hidden_states = self.mlp(hidden_states)
    return hidden_states, residual

get_quant_config

get_quant_config(
    vllm_config: VllmConfig,
) -> QuantizationConfig | None
Source code in vllm/model_executor/models/pangu.py
def get_quant_config(self, vllm_config: VllmConfig) -> QuantizationConfig | None:
    return vllm_config.quant_config

PanguForCausalLM

Bases: LlamaForCausalLM, SupportsLoRA, SupportsPP

Causal LM head for OpenPangu Embedded.

Source code in vllm/model_executor/models/pangu.py
class PanguForCausalLM(LlamaForCausalLM, SupportsLoRA, SupportsPP):
    """Causal LM head for OpenPangu Embedded."""

    packed_modules_mapping: dict[str, list[str]] = {}
    mistral_mapping: dict[str, str] = {}

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__(
            vllm_config=vllm_config,
            prefix=prefix,
            layer_type=PanguDecoderLayer,
        )

    def _init_model(
        self,
        vllm_config: VllmConfig,
        prefix: str = "",
        layer_type: type[nn.Module] = PanguDecoderLayer,
    ):
        return PanguModel(vllm_config=vllm_config, prefix=prefix, layer_type=layer_type)

mistral_mapping class-attribute instance-attribute

mistral_mapping: dict[str, str] = {}

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping: dict[str, list[str]] = {}

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/pangu.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__(
        vllm_config=vllm_config,
        prefix=prefix,
        layer_type=PanguDecoderLayer,
    )

_init_model

_init_model(
    vllm_config: VllmConfig,
    prefix: str = "",
    layer_type: type[Module] = PanguDecoderLayer,
)
Source code in vllm/model_executor/models/pangu.py
def _init_model(
    self,
    vllm_config: VllmConfig,
    prefix: str = "",
    layer_type: type[nn.Module] = PanguDecoderLayer,
):
    return PanguModel(vllm_config=vllm_config, prefix=prefix, layer_type=layer_type)

PanguMLP

Bases: Module

Feed-forward network for PanguEmbedded layers.

Source code in vllm/model_executor/models/pangu.py
class PanguMLP(nn.Module):
    """Feed-forward network for PanguEmbedded layers."""

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        *,
        bias: bool,
        quant_config: QuantizationConfig | None,
        prefix: str,
    ) -> None:
        super().__init__()
        self.gate_proj = ColumnParallelLinear(
            hidden_size,
            intermediate_size,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.gate_proj",
        )
        self.up_proj = ColumnParallelLinear(
            hidden_size,
            intermediate_size,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.up_proj",
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.down_proj",
        )
        self.act_fn = get_act_fn(hidden_act)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        gate, _ = self.gate_proj(hidden_states)
        up, _ = self.up_proj(hidden_states)
        hidden_states = self.act_fn(gate) * up
        hidden_states, _ = self.down_proj(hidden_states)
        return hidden_states

act_fn instance-attribute

act_fn = get_act_fn(hidden_act)

down_proj instance-attribute

down_proj = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.down_proj",
)

gate_proj instance-attribute

gate_proj = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.gate_proj",
)

up_proj instance-attribute

up_proj = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.up_proj",
)

__init__

__init__(
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    *,
    bias: bool,
    quant_config: QuantizationConfig | None,
    prefix: str,
) -> None
Source code in vllm/model_executor/models/pangu.py
def __init__(
    self,
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    *,
    bias: bool,
    quant_config: QuantizationConfig | None,
    prefix: str,
) -> None:
    super().__init__()
    self.gate_proj = ColumnParallelLinear(
        hidden_size,
        intermediate_size,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.gate_proj",
    )
    self.up_proj = ColumnParallelLinear(
        hidden_size,
        intermediate_size,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.up_proj",
    )
    self.down_proj = RowParallelLinear(
        intermediate_size,
        hidden_size,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.down_proj",
    )
    self.act_fn = get_act_fn(hidden_act)

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/pangu.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    gate, _ = self.gate_proj(hidden_states)
    up, _ = self.up_proj(hidden_states)
    hidden_states = self.act_fn(gate) * up
    hidden_states, _ = self.down_proj(hidden_states)
    return hidden_states

PanguModel

Bases: Module

Backbone model for OpenPangu Embedded.

Source code in vllm/model_executor/models/pangu.py
class PanguModel(nn.Module):
    """Backbone model for OpenPangu Embedded."""

    def __init__(
        self,
        *,
        vllm_config: VllmConfig,
        prefix: str = "",
        layer_type: type[nn.Module] = PanguDecoderLayer,
    ) -> None:
        super().__init__()

        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config

        self.config = config
        self.quant_config = quant_config
        lora_vocab = (
            (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
            if lora_config
            else 0
        )
        self.vocab_size = config.vocab_size + lora_vocab
        self.org_vocab_size = config.vocab_size
        if get_pp_group().is_first_rank or (
            getattr(config, "tie_word_embeddings", True) and get_pp_group().is_last_rank
        ):
            self.embed_tokens = VocabParallelEmbedding(
                self.vocab_size,
                config.hidden_size,
                org_num_embeddings=config.vocab_size,
                quant_config=quant_config,
            )
        else:
            self.embed_tokens = PPMissingLayer()

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: layer_type(vllm_config=vllm_config, prefix=prefix),
            prefix=f"{prefix}.layers",
        )

        if get_pp_group().is_last_rank:
            self.norm = RMSNorm(
                config.hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5)
            )
        else:
            self.norm = PPMissingLayer()

        self.aux_hidden_state_layers: tuple[int, ...] = ()
        self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
            ["hidden_states", "residual"], config.hidden_size
        )

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor | None,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None,
        inputs_embeds: torch.Tensor | None = None,
    ) -> torch.Tensor | IntermediateTensors | tuple[torch.Tensor, list[torch.Tensor]]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        aux_hidden_states: list[torch.Tensor] = []
        for idx, layer in enumerate(self.layers[self.start_layer : self.end_layer]):
            if residual is None:
                aux_hidden_states.append(hidden_states)
            else:
                aux_hidden_states.append(hidden_states + residual)
            hidden_states, residual = layer(positions, hidden_states, residual)

        if not get_pp_group().is_last_rank:
            return IntermediateTensors(
                {"hidden_states": hidden_states, "residual": residual}
            )

        hidden_states, _ = self.norm(hidden_states, residual)

        if aux_hidden_states:
            return hidden_states, aux_hidden_states
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

aux_hidden_state_layers instance-attribute

aux_hidden_state_layers: tuple[int, ...] = ()

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size,
    hidden_size,
    org_num_embeddings=vocab_size,
    quant_config=quant_config,
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states", "residual"], hidden_size
    )
)

norm instance-attribute

norm = RMSNorm(
    hidden_size, eps=getattr(config, "rms_norm_eps", 1e-05)
)

org_vocab_size instance-attribute

org_vocab_size = vocab_size

quant_config instance-attribute

quant_config = quant_config

vocab_size instance-attribute

vocab_size = vocab_size + lora_vocab

__init__

__init__(
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    layer_type: type[Module] = PanguDecoderLayer,
) -> None
Source code in vllm/model_executor/models/pangu.py
def __init__(
    self,
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    layer_type: type[nn.Module] = PanguDecoderLayer,
) -> None:
    super().__init__()

    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    lora_config = vllm_config.lora_config

    self.config = config
    self.quant_config = quant_config
    lora_vocab = (
        (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
        if lora_config
        else 0
    )
    self.vocab_size = config.vocab_size + lora_vocab
    self.org_vocab_size = config.vocab_size
    if get_pp_group().is_first_rank or (
        getattr(config, "tie_word_embeddings", True) and get_pp_group().is_last_rank
    ):
        self.embed_tokens = VocabParallelEmbedding(
            self.vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
            quant_config=quant_config,
        )
    else:
        self.embed_tokens = PPMissingLayer()

    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers,
        lambda prefix: layer_type(vllm_config=vllm_config, prefix=prefix),
        prefix=f"{prefix}.layers",
    )

    if get_pp_group().is_last_rank:
        self.norm = RMSNorm(
            config.hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5)
        )
    else:
        self.norm = PPMissingLayer()

    self.aux_hidden_state_layers: tuple[int, ...] = ()
    self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
        ["hidden_states", "residual"], config.hidden_size
    )

forward

forward(
    input_ids: Tensor | None,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None,
    inputs_embeds: Tensor | None = None,
) -> (
    Tensor
    | IntermediateTensors
    | tuple[Tensor, list[Tensor]]
)
Source code in vllm/model_executor/models/pangu.py
def forward(
    self,
    input_ids: torch.Tensor | None,
    positions: torch.Tensor,
    intermediate_tensors: IntermediateTensors | None,
    inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors | tuple[torch.Tensor, list[torch.Tensor]]:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
        residual = None
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
        residual = intermediate_tensors["residual"]

    aux_hidden_states: list[torch.Tensor] = []
    for idx, layer in enumerate(self.layers[self.start_layer : self.end_layer]):
        if residual is None:
            aux_hidden_states.append(hidden_states)
        else:
            aux_hidden_states.append(hidden_states + residual)
        hidden_states, residual = layer(positions, hidden_states, residual)

    if not get_pp_group().is_last_rank:
        return IntermediateTensors(
            {"hidden_states": hidden_states, "residual": residual}
        )

    hidden_states, _ = self.norm(hidden_states, residual)

    if aux_hidden_states:
        return hidden_states, aux_hidden_states
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/pangu.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_tokens(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/pangu.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights)